Artificial Intelligence CE-417, Group 1 Computer Eng. Department Sharif University of Technology

Fall 2023

By Mohammad Hossein Rohban, Ph.D.

Courtesy: Most slides are adopted from CSE-573 (Washington U.), original slides for the textbook, and CS-188 (UC. Berkeley).



A learning problem: predict fuel efficiency

mpg

Y

cylinders

• From the UCI repository (thanks to Ross Quinlan)

• 40 records

• Discrete data (for now)

• Predic MPG

	e)e.e.e	anopiaioonione					
good	4	low	low	low	high	75to78	aisa
oad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
oad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
							-
				-		•	-
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Χ

weight

acceleration modelyear

maker

3

displacement horsepower

Need to find "Hypothesis": $f: X \to Y$

How Represent Function?

ſ	(cylinders	displacement	horsepower	weight	acceleration	modelyear	maker) _	mr	og
) -	7 –	
		4	low	low	low	high	75to78	asia	/	go	od

General Propositional Logic?

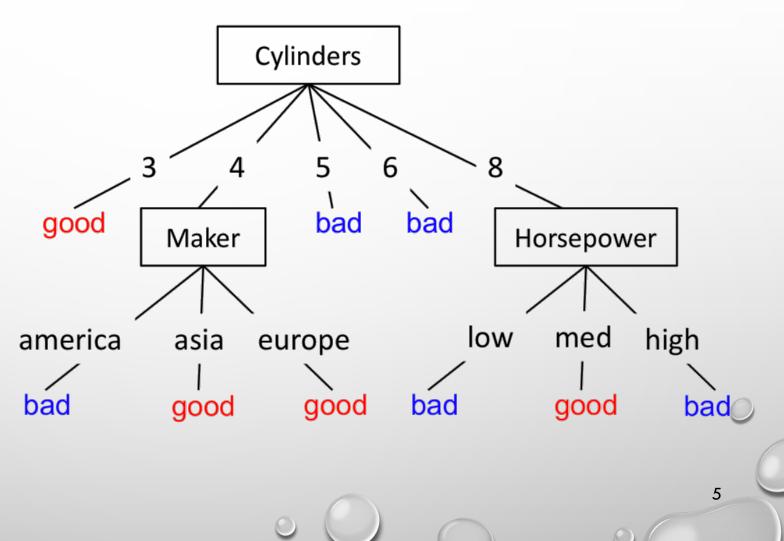
maker=asia ∨ weight=low

 $f: X \rightarrow Y$

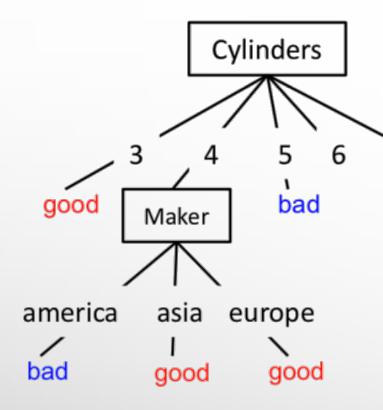
Need to find "Hypothesis":

Hypotheses: decision trees $f: X \rightarrow Y$

- Each internal node tests an attribute x_i
- Each branch assigns an attribute value x_i=v
- Each leaf assigns a class y
- To classify input x?
- traverse the tree from root
 to leaf, output the labeled y



What functions can be represented?



 $cy = 3 \lor (cy = 4 \land (maker = asia \lor maker = europe)) \lor \cdots$

- Operators?
- Start State?
- Goal?

Search Algorithm?

• Heuristic?

Learning as Search

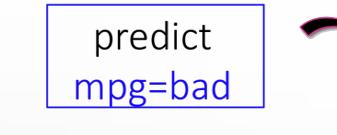
The Starting Node: What is the Simplest Tree?

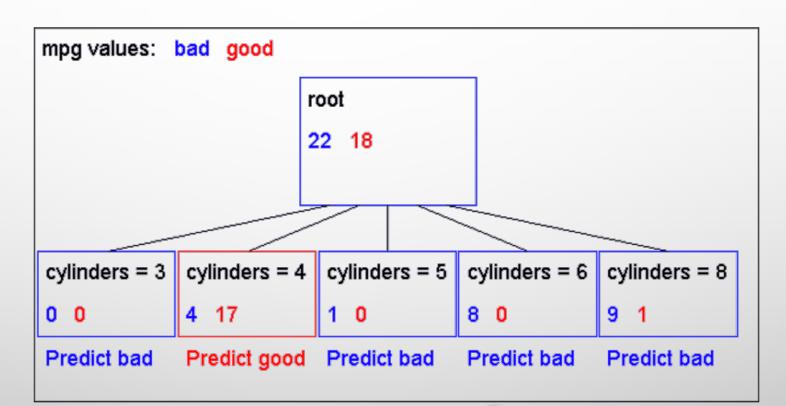
predict mpg=bad

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	aisa
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
		•	•				•
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

- Is this a good tree?
- [22+, 18-] : Means: correct on 22 examples incorrect on 18 examples.

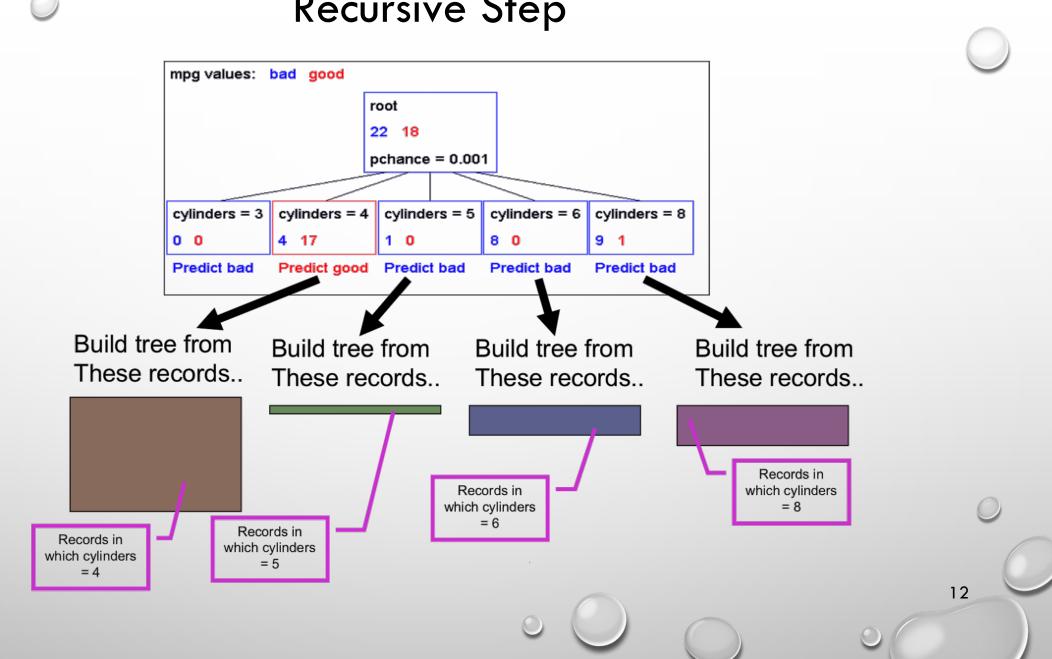
Operators: Improving the Tree



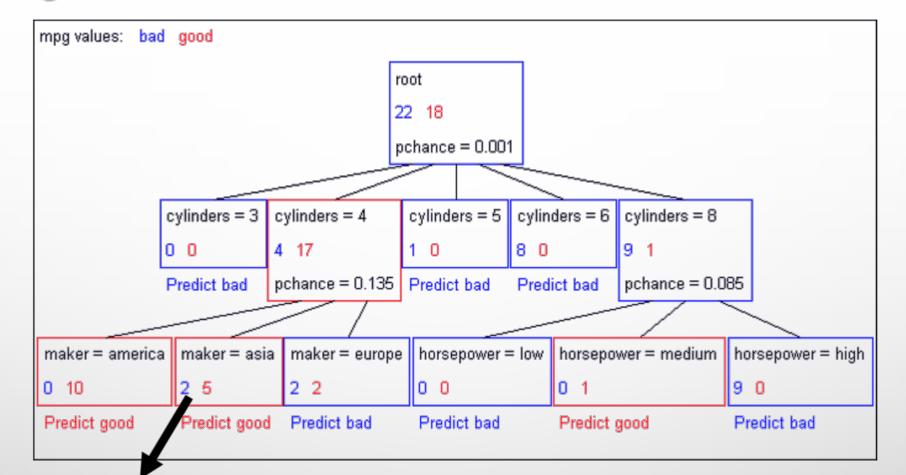


 \bigcirc

Recursive Step



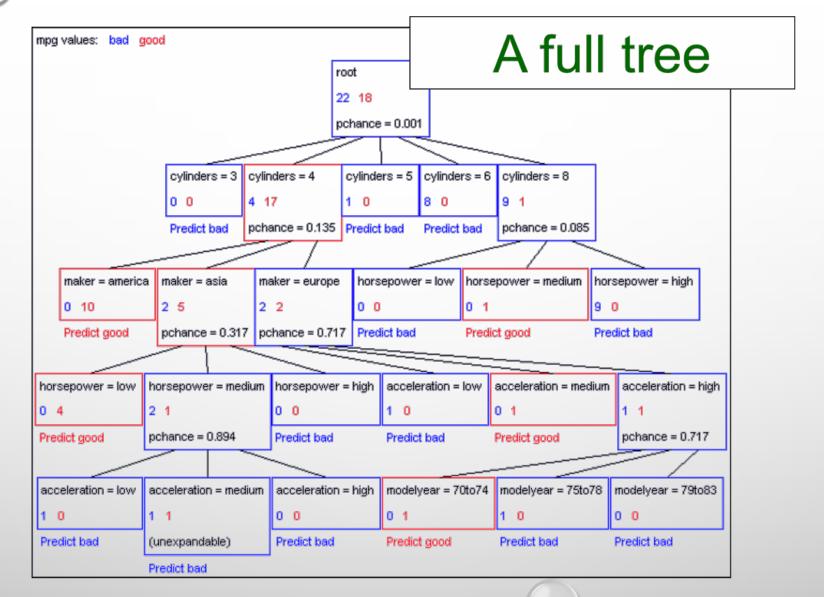
Second level of Tree



Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

(Similar recursion in the other cases)

A Full Tree

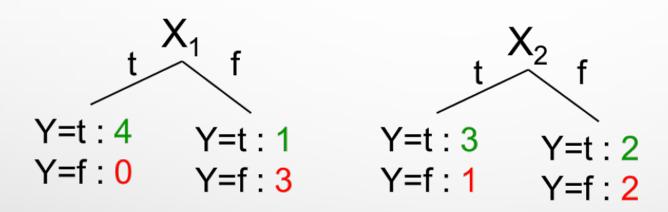


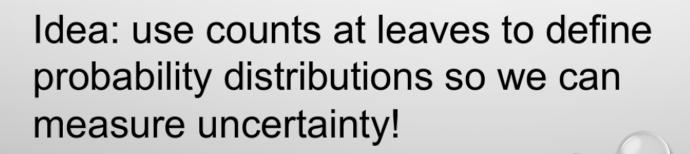
Two Questions

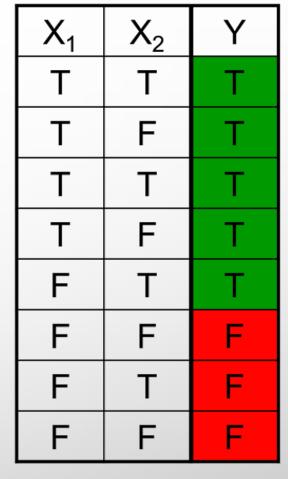
- Hill Climbing Algorithm:
 - Start from empty decision tree
 - Split on the **best attribute (feature)** Recurse
- Which attribute gives the best split?
- When to stop recursion?

Splitting: choosing a good attribute

Would we prefer to split on X_1 or X_2 ?







Measuring uncertainty

• Good split if we are more certain about classification after split

- Deterministic good (all true or all false)
- Uniform distribution? BAD
- What about distributions in between?

Which attribute gives the best split?

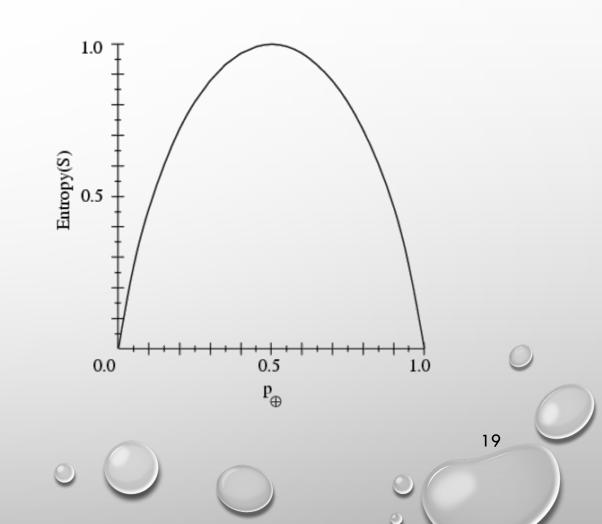
- A1: The one with the highest information gain
 - Defined in terms of entropy
- A2: Actually many alternatives,
 - e.g., accuracy. Seeks to reduce the misclassification rate

Entropy

Entropy H(Y) of a random variable Y

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

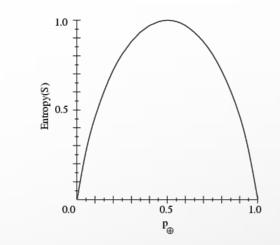
- More uncertainty, more entropy!
- Information Theory interpretation:
 - H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

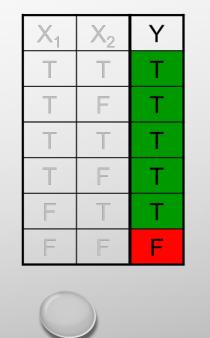


Entropy Example

$$P(Y = t) = 5/6, P(Y = f) = 1/6$$

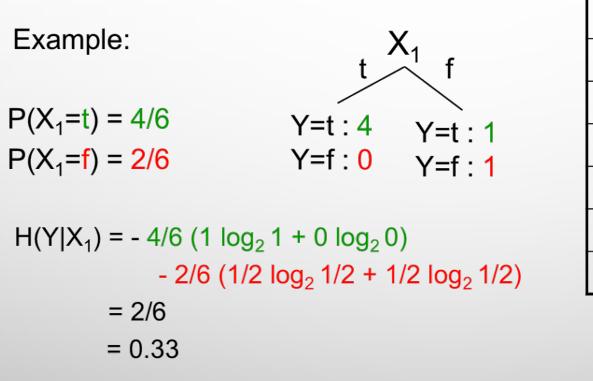
$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$
$$P(Y = t) = \frac{5}{6}$$
$$P(Y = f) = \frac{1}{6}$$
$$H(Y) = -\frac{5}{6} \log_2 \frac{5}{6} - \frac{1}{6} \log_2 \frac{1}{6} \approx 0.65$$





Conditional Entropy

• Conditional Entropy H(Y | X) of a random variable Y conditioned on a random variable X $H(Y|X) = -\sum_{i=1}^{\nu} P(X = x_i) \sum_{j=1}^{k} P(Y = y_i | X = x_j) \log_2 P(Y = y_i | X = x_j)$



X ₁	X_2	Y
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Τ	Т
F	F	F

Information Gain

• Advantage of attribute – decrease in entropy (uncertainty) after splitting

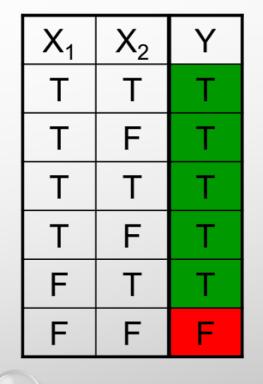
$$G(X) = H(Y) - H(Y|X)$$

In our running example:

$$IG(X_1) = H(Y) - H(Y|X_1)$$

= 0.65 - 0.33

 $IG(X_1) > 0 \rightarrow$ we prefer the split!



Learning Decision Trees

23

- Start from empty decision tree
- Split on next best attribute (feature)
- Use information gain (or...?) to select attribute:

$$\underset{i}{\operatorname{argmax}IG(X_i)} = \underset{i}{\operatorname{argmax}}[H(Y) - H(Y|X_i)]$$

• Recurse.

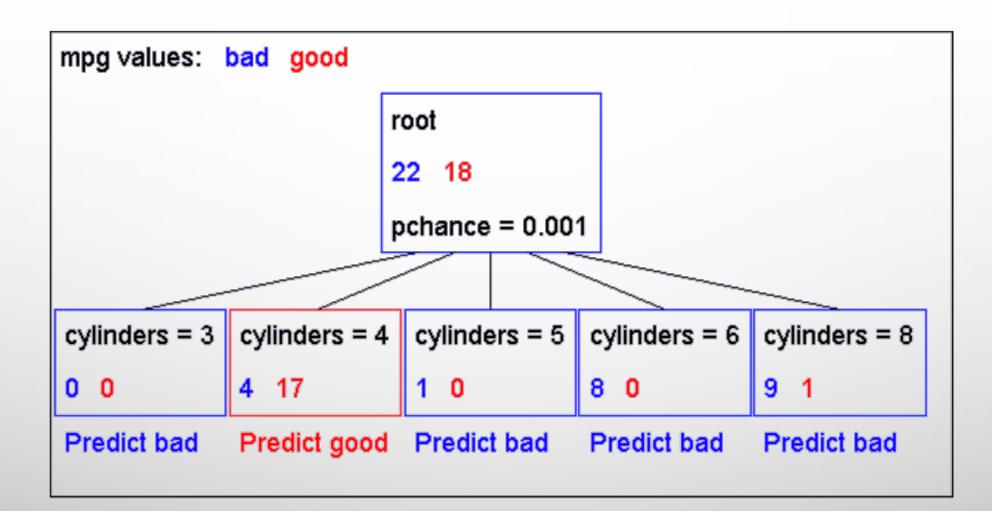
Learning Decision Trees (cont.)

- Suppose we want to predict MPG.
 - Now, Look at all the information gains...

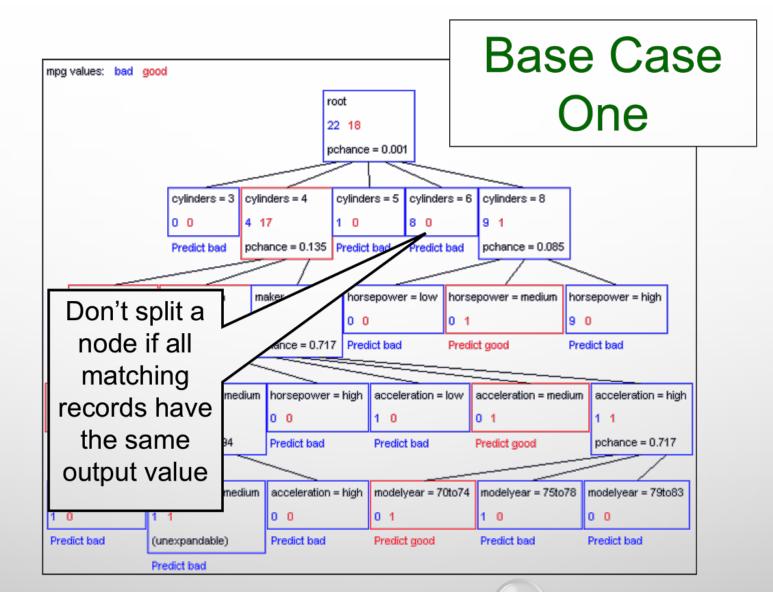
		the training set (
	bad goo		
Input	Value	Distribution	Info Gain
cylinders	3		0.506731
	4		
	5		
	6		
	8		
displacement	low		0.223144
	medium		
	high		
horsepower	low		0.387605
	medium		
	high		
weight	low		0.304018
	medium		
	high		
acceleration	low		0.0642088
	medium		
	high		
modelyear	70to74		0.267964

24

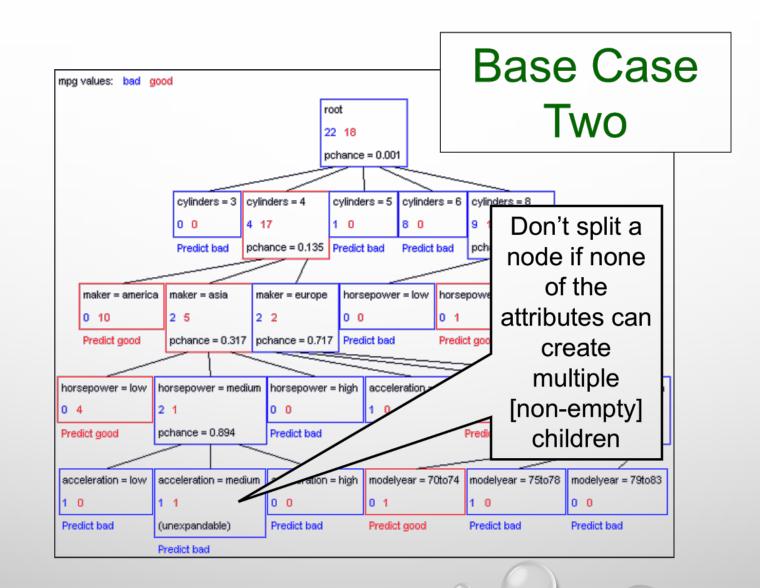
Tree After One Iteration



When to Terminate?

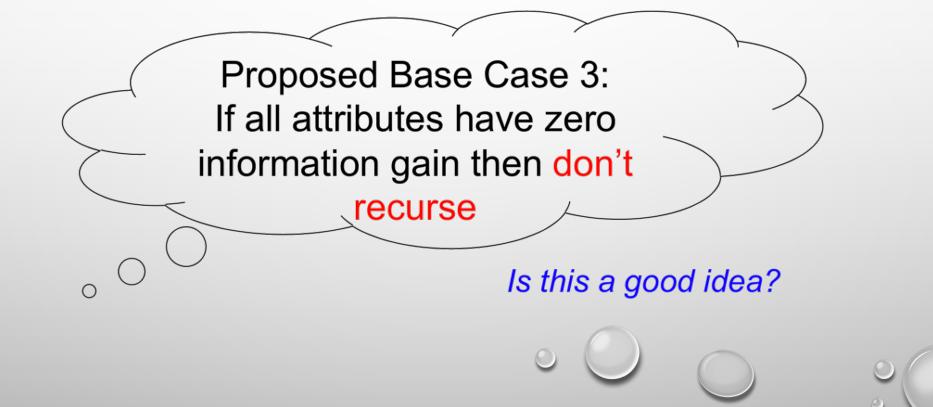


When to terminate? (cont.)



Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse.
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse.

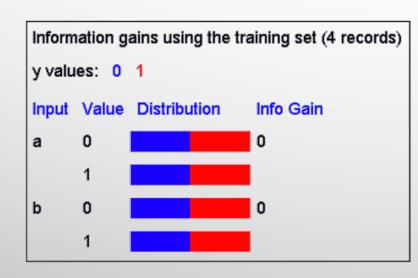


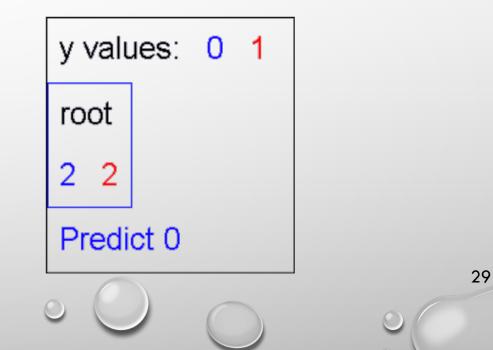
The problem with Base Case 3

а	b	У
0	0	0
0	1	1
1	0	1
1	1	0

The information gains:

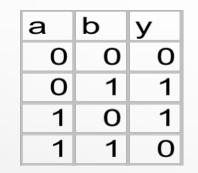
The resulting decision tree:





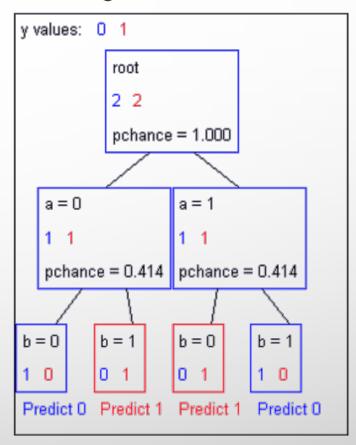
But Without Base Case 3:

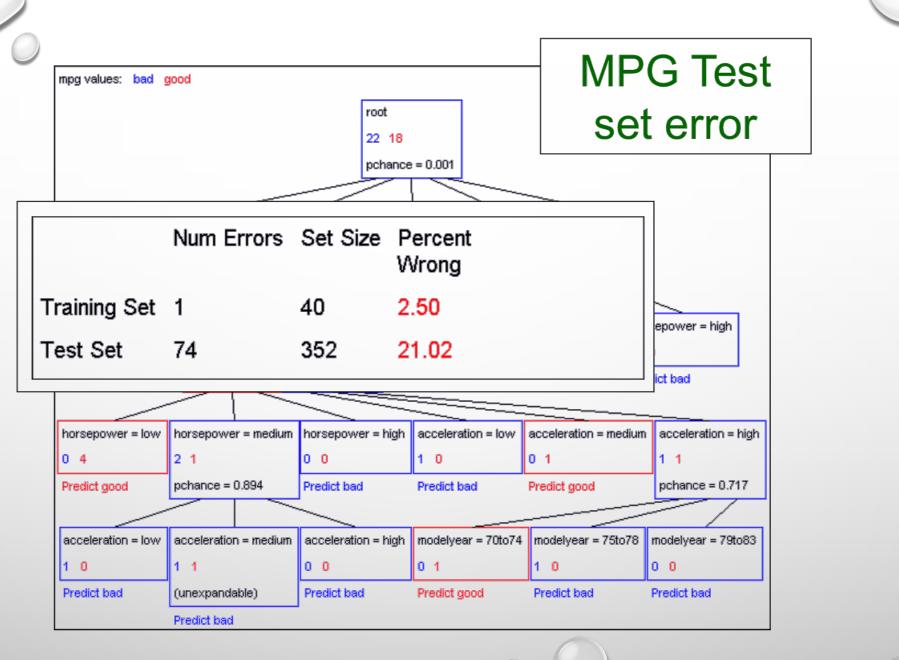
y = a XOR b

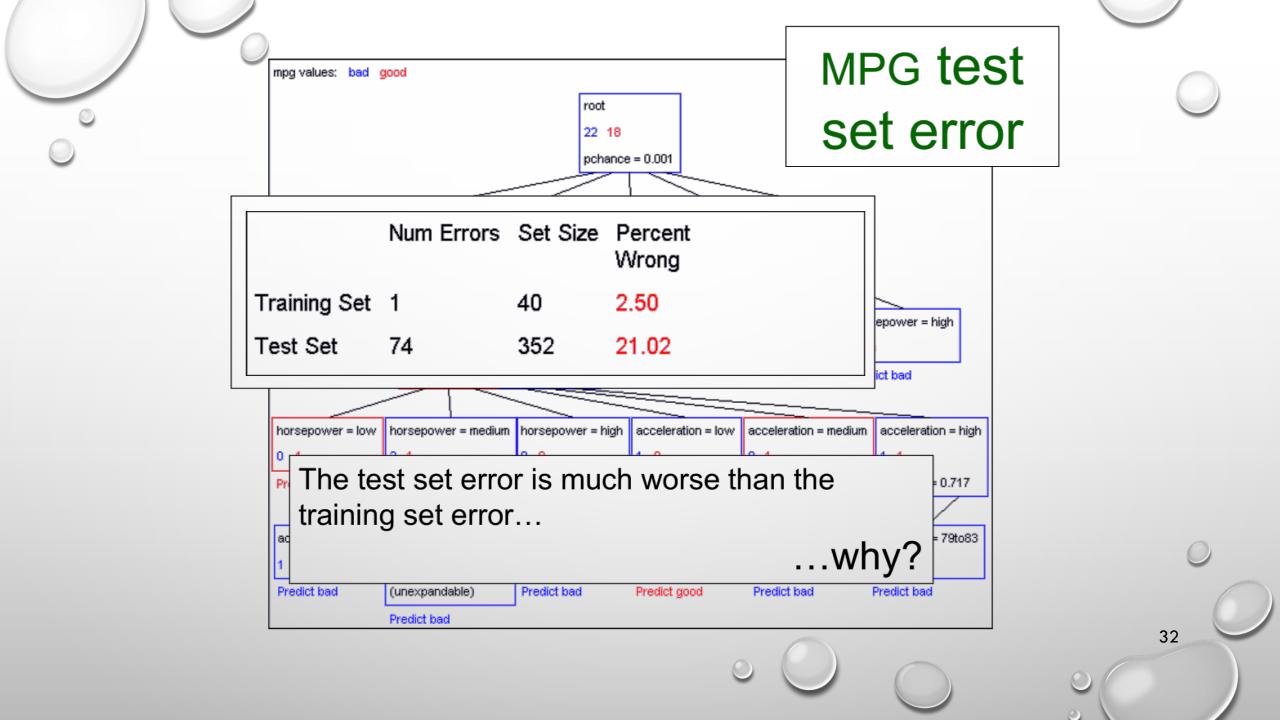


So: Base Case 3? Include or Omit?

The resulting decision tree:







Decision trees will overfit

- Our decision trees have no learning bias
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Will definitely overfit!!!
 - Must introduce some bias towards simpler trees
- Why might one pick simpler trees?

Inductive bias

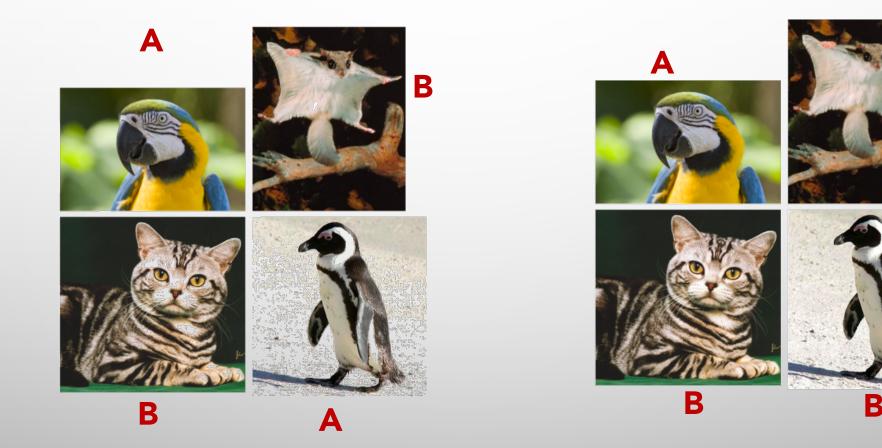
• Suppose that you are given 8 training samples for two classes A and B.

Inductive bias (cont.)

Α

35

• What is your guess on the classes of the following test data?

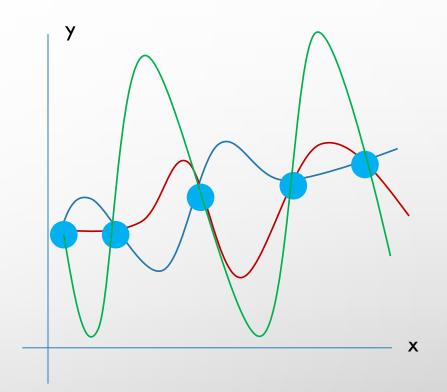


Inductive bias (cont.)

- Each person has a bias in learning (bird vs. Non-bird or flying vs. Non-flying).
- In the absence of data that narrows down the relevant concept, what type of solutions are we more likely to prefer?
- Different approaches that we introduce in this course are different types of biases.
- Suppose that we restrict depth of a decision tree. What would be the inductive bias?
- Correct inductive bias is necessary for a problem to be learnable.

"No free lunch" theorem

- Suppose that all the functions that are consistent with any given training data are equally likely a solution to our induction.
- Then all learning algorithms would have the same average true error on out-of-training-sample (D_o), where average is taken across different problems.
- This includes random guessing!
 - So in absence of any sense on what functions are more likely, learning is impossible!



Occam's Razor

- Why Favor Short Hypotheses?
- Arguments for:
 - Fewer short hypotheses than long ones
 - \rightarrow A short hyp. less likely to fit data by coincidence
 - \rightarrow Longer hyp. that fit data might be coincidence

How to Build Small Trees

39

• Several reasonable approaches:

Stop growing tree before overfit

- Bound depth or # leaves
- Base Case 3
- Doesn't work well in practice

Grow full tree; then prune

- Optimize on a held-out (development set)
 - If growing the tree hurts performance, then cut back
 - Con: Requires a larger amount of data...

Use statistical significance testing

- Test if the improvement for any split is likely due to noise
- If so, then prune the split!

Reduced Error Pruning

• Split data into training & validation sets (10-33%)

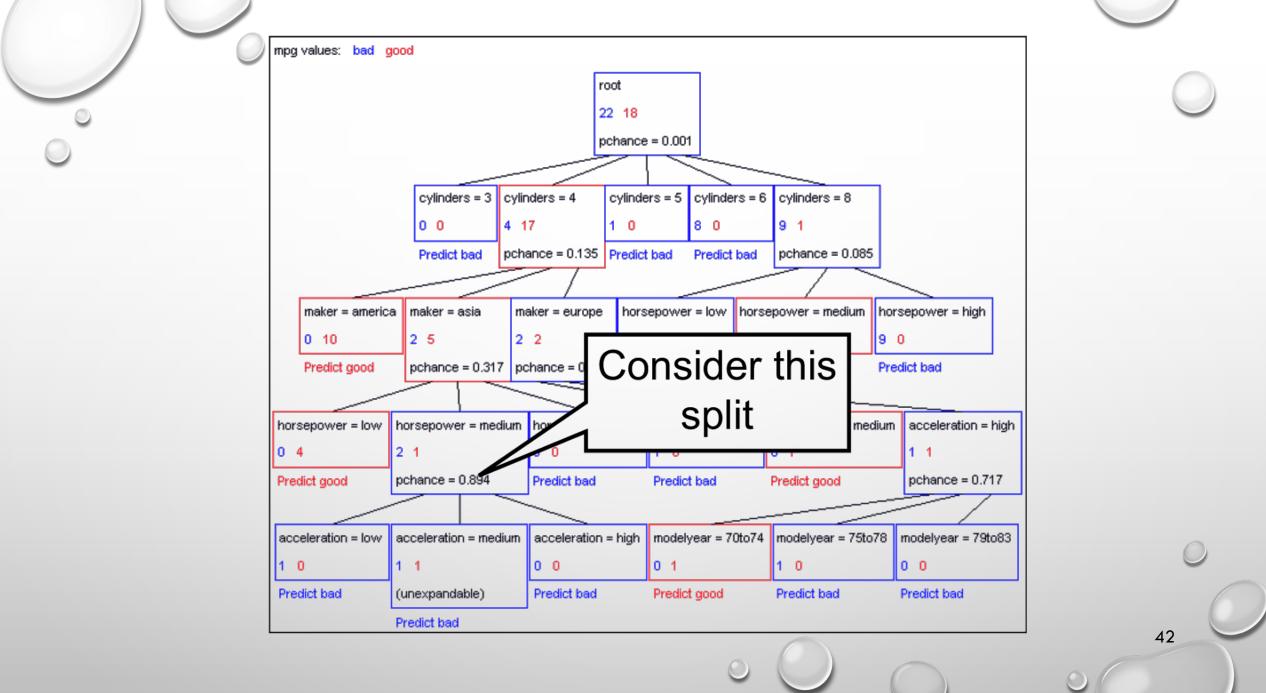
- Train on training set (overfitting)
- Do until further pruning is harmful:

1) Evaluate effect on validation set of pruning **each** possible node (and tree below it)

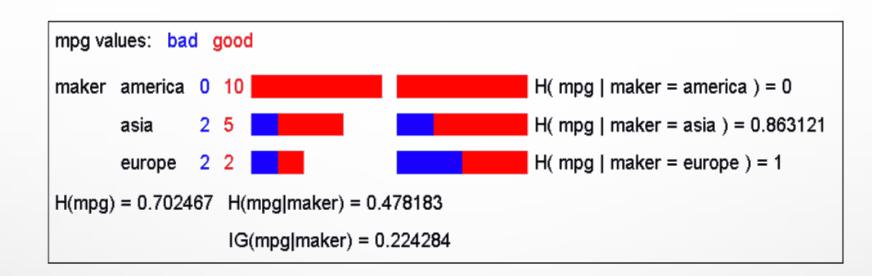
2) Greedily remove the node that most improves accuracy of validation set

Alternatively

- Chi-squared pruning
 - Grow tree fully
 - Consider leaves in turn
 - Is parent split worth it?



A chi-square test



 Suppose that mpg was completely uncorrelated with maker. What is the chance we'd have seen data of at least this apparent

- level of association anyway?
- By using a particular kind of chi-square test, the answer is 13.5%. Such hypothesis tests are relatively easy to compute, but involved

⁹Using Chi-squared to avoid overfitting

• Build the full decision tree as before

But when you can grow it no more, start to prune:

Beginning at the bottom of the tree, delete splits in which p_{chance} > MaxPchance

- Continue working you way up until there are no more prunable nodes
- MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise

